If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(2x)^2-60=4
We move all terms to the left:
(2x)^2-60-(4)=0
We add all the numbers together, and all the variables
2x^2-64=0
a = 2; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·2·(-64)
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{2}}{2*2}=\frac{0-16\sqrt{2}}{4} =-\frac{16\sqrt{2}}{4} =-4\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{2}}{2*2}=\frac{0+16\sqrt{2}}{4} =\frac{16\sqrt{2}}{4} =4\sqrt{2} $
| 7x(4-3)=-2x+8 | | x-7=2x-21 | | t/2=1/3 | | Y=-2/3x+8/3 | | 6b-24=2b+48 | | F(3)=3^2x-4 | | 3(0.5-4)=3/2x=1.2 | | x+2x+x+2x=22 | | 5x+1=6×-4 | | x−25.8=−7.3 | | 3(2x+-1)+4=4x+-2(3+-1x) | | 24=8r-12 | | 24=8r=12 | | X^2=4x-60 | | 4x-5(x+1)+10=0A.20 | | 3/4x+2/3x+3=5/6x+10 | | 4×+9y=0 | | 49x^2=-100 | | -4(3y-5)+7y+5=0 | | 2+4+4(15$=x | | 3(3y-1)-9y=-3 | | -15/5=3(4x)+4x | | 5(-2x)-4x=-56 | | 5(0)+11+4y=31 | | -9=4(-2x) | | (3x^2-2x-6)=0 | | (2x^2+6x+3)=0 | | 4(6y/5-25/5)-3y+20=0 | | 4(6y-25/5)-3y+20=0 | | 2x+1+4x+5=7x-6 | | 2n+17=45 | | (m^2-121)=0 |